AN EXACT SOLUTION OF THE NAVIER — STOKES EQUATIONS FOR
A CHEMICALLY REACTING MIXTURE OF GASES

V. A. Kronrod and V. V., Shchennikov UDC 541.124:532.5

An exact solution of the Navier — Stokes equations is presented for the flow of a viscous
heat-conducting chemically reacting mixture of gases in a two-dimensional expanding chan-
nel. The conditions for the existence of an exact solution of the source type are: the chemi-~
cal reactions must be equimolecular in an equilibrium mixture of gases, and they must be
second order forward and backward in a nonequilibrium mixture. Numerical results are
obtained for the flow of a four-component equilibrium mixture of gases in a two-dimensional
nozzle for various Mach numbers (M) and Reynolds numbers (Re).

1. The existence of an exact solution of the Navier-Stokes equations for the internal flow of a vis-

cous compressible gas was first established by Williams [1}. His exact solution describes gas flow in a
conical nozzle with a special heat- and mass-transfer law. Byrkin |2] generalized the Hamel solution to
the flow of a viscous compressible gas. Shchennikov [3] constructed a class of exact solutions of the Navi-
er— Stokes equations which includes the results of [1, 2] as special cases.

The procedure described in {3] can be generalized to the flow of a chemically reacting mixture of

gases.

We consider two-dimensional flows of an m-component chemically reacting mixture of gases consist-

ing of ¥ chemical elements.

The system of equations describing the flow can be written in the following vector form:
the equations of motion
p(VI)V=—Vp4+1,V(uVY¥) - nAV4V(TuV) —V x (Vg X V)— VAp
the equation of continuity
V{V)=0

the equation of conservation of energy

m

V-V 2 e —(V-¥)p = VAVT) — 2y (V) + pa (V)2 —
a=1

—2uV-V(VV) + 2uAV X (VX V) —p(V X V)2 — X A(Jhs)
a=1

the equations of conservation of chemical elements

NV peV4+I)=0 (=12..,v—1)

a=}

anzl

a=1
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the equations of chemical equilibrium for an equilibrium mixture

For a nonequilibrium mixture of gases, m — ¥ equilibrium equations are replaced by m — ¥ equations
for the diffusion of the chemical components [4].

N m m
VotV + 1) = 3 b(Kpo® [] o2 — Kupp* [] &) (31,2, s m—)

p=1 =1 l=21

The Stefan—Maxwell equations are [5]

A | Iy o TG
-4 (Befs 35
| —_—— == c v = +
a-_—1.21==3 '01):13 Ca CB agl * :1—21 Cy
m -
Cafq (D Dn,T
ST 3 TD—”‘—( 2 D ) @=1,2 ... m—1)
a=1,a523 ' 93 % 3
m .
N T, e
a=1
The equation of state is
m
p:pRTZEl
a=l1

Here V, o, p, T,u,and A are respectively the velocity, density, pressure, temperature, viscosity,
and thermal conductivity of the mixture of gases; Cqy: By Dozﬁ’ D, and Jy are respectively the concentra-
tion, specific enthalpy, the binary and thermal diffusion coefficients and the diffusion current density for
component «; nry is the number of atoms of chemical element 7 in compeonent o V&.B (Vo';ﬁ) are the stoichio-
metric coefficients of the ath and gth forward (backward) reaction; K, is the equilibrium constant of the
Bth reaction; and Ky, are the reaction rates of the Sth forward and the oth backward reactions; R is
the universal gas constant; V is the Hamilton operator; A=V? ig the Laplacian operator; N is the number -

of nonequilibrium chemical reactions
Ta=cy/ My Y, =3o/M,
M, is the molecular weight of the ath component.

The system of equations is completed by using the thermodynamic relations for the transfer coeffi-
cients and writing h,, Kpﬁ , KfB , and Kboz as functions of the temperature.

2. We seek a transformation of coordinates and unknown functions leaving the initial system of equa-
tions and the functional relations completing it invariant. We consider a scale transformation

x=x*§, Y= y*n
¢ =0¢*D° @=u2p0p7,..)

Calculation shows that the required transformation has the form
E=n=1/C, J;°=p"=p"=C, Dy° =1/C (2.1
where C is an arbitrary constant.
The following conditions must be satisfied:

for equilibrium chemical reactions
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a=0 (2.2)

for nonequilibrium chemical reactions
Q=5=2 (2.3)

Assuming C = 1, which is the condition that the transformation (2.1} be nontrivial, we obtain

Pz =p* (2), pz = p* (5) Joz = I, (3), Dop p = dup (2) 2.4

where z = y/X.
Condition (2.2) is the requirement that the equilibrium chemical reactions be equimolecular, and (2.3)

states that in the nonequilibrium case the forward and backward reactions are second order.

Substituting the self-similar solution (2.4) into the equation of continuity we obtain

zu (z2) = v (2) (2.5)
It follows from (2.5) that the solution (2.4) corresponds to flow from a source at the origin.

If we limit our discussion to the flow within a plane dihedral angle and take account of (2.5), the solu-
tion (2.4) describes a constant flow rate along the channel. In this case the x axis is the longitudinal coor-

dinate.
It is shown that as in the Hamel solution, the solution found can satisfy the condition of adhesion to
the channel walls, and the problem of formulating other boundary conditions is discussed.

3. We change to polar coordinates r, §. Using (2.4) and (2.5),we seek a solution in the form

ve=w(0), p=rp*(0), ha=ha(0)
ve=0, o=r"1p*(0), ¢, =c.(0)

T=T(®), Di=pida(8), p=n(o)
D." = D.7(8), Ky =Ky,(0), Ky-—K;(®)

K=Ky (9), A=k(0), Jor =1, (0), Joe=0
@B=12...ml=1,2...m—v, i=1,2 ..., N)

3.1

where v.,,J ., Vg, and Jy are respectively the radial and angular components of the velocity and diffusion
current density of component «,

The last of Egs. (3.1) is a consequence of the Stefan—Maxwell relations resolved along the ¢ direc-
tion.

The dimensionless form s of the equations describing self-similar flow in polar coordinates are.

the equations of motion

d d 4 q <
{4 dpw dw dp* .
(4w SE )~ ReSF- =0 (3.3)

the equation of conservation of energy

m

d dT M2 dw? 1

P e — g D L] =0 .4
a=1

the equations for the diffusion of chemical elements

m
df, -
Z}lnmd—é‘..—_o =12 ... v—1) {3.5)
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< deg
EITf"Z 0 (3.6)

the Sefan—Maxwell relations

m o o I I m m -
Y Lt (o) =(Da) B A
P*dys ¢ cs 2 a = a0\ % '

2=1,a#3

AT P (DT DT
- [y P S 3=1,2,..,m—1) -
-5 HZM i ( » ) ( (3.7)
NI, 0
a=1
the equation of state
p¥ = o*T Z Ca (3.8)
a==1

the equations of chemical equilibrium for an equilibrium mixture

-5 (In Kpg) = Z(W,— ws) o5 (N8) B=12..,m—v {3.9)

the equations for the diffusion of the chemical components for a nonequilibrium mixture

(3.10)

_. m

= ReSm 2 (\,g — Va3) (KfaH e — KbBH 515) (p*)?
B=1 I=1

(:1:1, 2, ., m—N)

In writing the dimensionless equations the reference quantities were chosen as
=py*RTy  Dago = (Po*)™" daso

Wy, p0*3 T01 Ko, ;‘07 cpu Po*
are respectively the thermal conductiv-

equal to the values of these quantities at § = 0. Here A, iy, and ¢
ity, viscosity, and specific heat at constant pressure of the mixture of gases

% wo Cpto o
—_ A 2 Pr= Sm =
Re Uy ! r Ao ! Do‘DaBO
T PSR
T TwRT, K= % T h

where Re is the Reynolds number, Pr is the Prandtl number for the mixture of gases, Smis the Schmidt
number calculated from one of the characteristic binary diffusion coefficients of the mixture, e.g., the

largest. and M is the Mach number.
Let us discuss some general properties of the self-similar solution (3.1

We add (3.3) to the derivative of (3.2). The solution of the resulting differential equation

d* { du- dw 0

7o Py ) T

is
”-% = Acos(0 -+ 9)

where A and ¢ are arbitrary constants.
For symmetric flow within a two-dimensional nozzle, i.e., dwd¢ = 0 at - 0, we have by using (3.2)
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W dwidd = A sin 0
(A==9%3~.Re/(xM?2)

We require that the adhesion condition be satisfied at 9 = Oy where Oy is the half-angle opening of
the nozzle, i.e., w(()w) = 0. We obtain from (3.2) an expression for the pressure at the nozzle wall,
pe* = p* (0,) = — (xM?/ Re) A cos 8,
from which it follows that
0,.<< n/2

The adhesion condition at the nozzle wall can be satisfied by taking A < 0, i.e., when
RG > 4/”3 '}(.‘\/12
Integrating (3.4) once and using (3.5) gives

Smp -2 47 (e — 1) M2Awsin® — ) Lok, ~= C* (3.11
& -1

YoPr df

where C*is an integration constant. For symmetric flow C*- 0. Using C*= 0 it follows from (3.6) that the
condition that the walls be noncatalytic [I,,(65)= 0, @=1, 2, ..., m]is satisfied only for adiabatic walls,
i.e., when (dTAo), = 0.

We note another property of the self-similar solutions. It follows from (3.5) that

Mnady =€ (res1,2, ., v—1) (3.12)
a—=1

where the CF* are integration constants. Taking account of the symmetry of the flow conditions we find
that C3*= 0, i.e., the concentrations of chemical elements remain constant during the flow.

4. Let us consider in more detail a scheme for calculating the symmetric flow of an equilibrium mix-
ture of gases in a two-dimensional nozzle. We start with Eqgs. (3.6)-(3.12).

We arbitrarily divide the problem into dynamical and diffusion parts. The first relates to the equa-
tions of motion and conservation of energy, and the second to the remaining equations. The condition that
the reactions be equimolecular permits a solution of the diffusion part of the problem in the form of con-
centrations as functions of the temperature. By substituting this solution into the equation for the conserva-
tion of energy we seek a solution of the problem as a whole.

We write the solution of the equations for the diffusion part of the problem (3.6)-(3.9), (3.12) in the
form of concentration gradients and diffusion current density components as functions of the temperature
gradient

de, /40 = fa(Chy oo vy €y TYAT JdO (@=1,2,..., m) (4.1
L= F.(cy, ..., cn, T)dT [ dO (r=1,2,..., m (4.2)

Using (4.2) we have from (3.11)

ar Sm Pr M2 (x —1) Awsin0
a6

m
¢, Smp - Pr 5‘ Fohy (4.3)

a=1

The problem can be solved numerically by integrating the system of ordinary differential equations
(3.10), (3.11), (4.1), and (4.3) by a standard numerical method.

The symmetry of flow conditions for ¢ = 0

! 1
7 =0 (x -1,2,...,m) j_l:{l'l =0
a0 ’

and the adhesion condition w = 0 at 6 = 6, can be used as boundary conditions.
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The numerical solution is obtained in the process of integrating the system of equations from 9= 0 to
§ = 6y, With w(8,)= 0. It follows from (4.3) that then (dT/Ag), = 0, i.e., the adiabatic condition (noncatalytic
walls) is satisfied.

5. As an example we present the results of numerical calculations of the flow of an equilibrium mix-
ture of gases consisting of the four components H,, H,O, CO, and CO,. We assume that the following equi-
molecular reaction occurs during the flow:

11,0 - CO = CO, + H,

The equilibrium constant of this reaction can be written as the ratio of the equilibrium constants of
the reactions

2H,0 = 2H, - 0,, 2C0 — 0, = 2CO,
and is related to the concentrations of the chemical components by the following equilibrium equations:
Ky — 8.8, [ 897 (0= Cy,00 2 = oo (3= ooy 7, = )
The viscosity of the mixture was calculated by formula [6], and the Prandt]l number of the mixture is
Pr = ¢, / (1.204 ¢p + 1.47)
where c. is the specific heat of the mixture of gases. The specific heats and enthalpies of the components
were cafculated by using the interpolation formulas given in {7].

Numerical calculations were performed for T(0) = 1700°K and no thermal diffusion. The results of
the calculations are shown in Figs. 1-4. Figure 1 shows the reduced temperature profile T/Tp (solid curve),
where Tp is the temperature corresponding to the flow of a frozen mixture of gases

Ty=(t—1) M*Pr (1 —u?) /2cp -1

and the temperature profile (open curve). The numbers on the curves correspond to flows at various M and
Re numbers: 2) M= 2, Re= 100; 3) M= 3, Re= 100; 4) M= 1. Re= 100. For comparison the reduced tempera-
ture profile T/Tp is shown for M = 3, Re = 100 and no diffusion (curve 1). Figure 2 shows the temperature
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profile (solid curve), the pressure (dashed curve), and the density (dot-dash curve): 1) M= 0.2, Re= 100; 2)
M= 2, Re= 1000; 3) M= 2, Re= 100; 4 M= 3. Re= 100; 5) M= 2, Re= 20,

Figure 3 shows profiles of the reduced concentrations ¢ of water vapor {solid curves) and molecular
hydrogen (open curves) corresponding to flows with Re= 100 and various M values: 1) M= 1; 2) M= 2; 3)
M=3.

Figure 4 shows profiles of the reduced concentrations of carbon monoxide (solid curves) and carbon
dioxide (open curves). The numbers on the curves and the values of the flow parameters are the same as

in Fig. 3.
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